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Research Article

Human counting affords a kind of condition-controlled 
logic wherein counters can increment a set by labeling 
items “one, two, three, four, . . .” until some condition is 
met. For example, items can be incremented until all 
items are counted, until the number of items counted 
reaches a target number, or until the items counted out-
number the value of another set. In the study reported 
here, we asked whether this condition-controlled logic, 
inherent in human counting, is a feature of nonhuman 
quantitative reasoning. Evidence that nonhuman animals’ 
quantification includes logic that is inherent in human 
counting would provide a new theoretical basis for con-
necting the principles of human counting with the prin-
ciples of evolutionarily primitive quantity systems.

Nonhuman animals do not use words like one, two, 
and three, or numerals like 1, 2, and 3, to “count” in the 
way that humans do. Nonetheless, it is well established 
that monkeys and other animals can approximate quanti-
ties without these symbolic labels (Gallistel, 1989; Gallistel 
& Gelman, 1992). For example, research studies using 
computerized tasks have shown that monkeys can roughly 
determine which of two sets of dots has the larger num-
ber (Beran, 2007; Brannon & Terrace, 1998; Cantlon & 
Brannon, 2006a, 2006b). Other studies have shown that 

apes and monkeys compute simple addition outcomes 
(Beran, 2001; Cantlon & Brannon, 2007). For example, 
monkeys can discriminate that when three objects are 
combined with five more, the total number is eight, not 
two or four. Monkeys also have been shown to discrimi-
nate quantities spontaneously, in naturalistic foraging 
tasks. Semiwild and experiment-naive primates can 
choose the larger of two sets of food items without any 
prior exposure to quantity decision tasks (Barnard et al., 
2013; Flombaum, Junge, & Hauser, 2005; Hauser, Carey, & 
Hauser, 2000). Many animal species, including even birds 
and fish, estimate quantity (Agrillo, Dadda, & Bisazza, 
2007; Emmerton, 2001; Pepperberg, 2006). A nonsymbolic 
sense of approximate quantity is likely a fundamental 
component of animal cognition (Gallistel, 1989).

The basic quantity skills of nonhuman animals are 
comparable to some of the numerical skills that human 
infants and young children exhibit in experiments on 
prelinguistic mathematical concepts (Brannon, 2002; 
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Lipton & Spelke, 2003; Wynn, 1992; Xu & Spelke, 2000). 
For example, when a set of 5 objects is combined with a 
set of 5 objects behind a screen, 6-month-old human 
infants are surprised if the screen is lifted to reveal only 
5 objects (i.e., they look longer than they do if the screen 
is lifted to reveal 10 objects; McCrink & Wynn, 2004; 
Wynn, 1992). Thus infants, children, and nonhuman ani-
mals possess cognitive mechanisms for representing and 
operating on numerical values. However, unlike nonhu-
mans, human children go on to learn a verbal counting 
routine. An area that has not been well explored is the 
extent to which nonhumans possess the logical opera-
tions that form the basis of verbal counting. Although 
some studies have shown that, with training, monkeys 
can compare sequentially presented sets (Beran, McIntyre, 
Garland, & Evans, 2014; Jordan, MacLean, & Brannon, 
2008), and other studies have shown that, with training, 
animals can associate quantitative meanings with numer-
als or words (Boysen & Bernston, 1989; Pepperberg, 
2006; Tomonaga & Matsuzawa, 2002), none have defined 
the logical algorithms of sequential quantification in non-
human animals that could serve as precursors to human 
counting.

All current formalizations of nonsymbolic quantifica-
tion assume that mental comparison happens at the end 
of incrementing, not item by item (Dehaene, 2009; Meck 
& Church, 1983). However, this assumption is based on 
an absence of data rather than a positive argument that 
comparison occurs only after all items are incremented. 
Other theories from the animal-learning literature posit 
that nonhuman animals represent a conditioned gradient 
of reinforcement across sets of items to discriminate 
quantity (e.g., Mechner, 1958; Ferster & Skinner, 1957). 
No studies have tested whether nonhuman animals spon-
taneously compare the relative values of two sets as they 
are in the process of quantifying. This question is impor-
tant because the answer to it will indicate the extent to 
which the primitive quantity routines of nonhuman ani-
mals contain logical elements of human counting—an 
issue central to discovering the evolutionary origins of 
human counting.

Here, we show that monkeys spontaneously compare 
a remembered quantity against item-by-item changes in 
the value of a new quantity, and thus keep constant tabs 
on the relative values of sets by comparing them incre-
mentally. Furthermore, using a novel Bayesian data anal-
ysis, we show that the monkeys’ spontaneous behavior is 
explained by a cognitive algorithm that is algorithmically 
and logically similar to human counting.

Method

Monkeys (N = 2; Papio anubis) were presented with a 
choice task in which pieces of food (shelled peanuts) 

were sequentially placed into two food caches that were 
spatially separated by at least an arm’s length. Each food 
cache was baited with a different quantity of food items, 
from 1 to 8. The food caches were baited consecutively, 
such that all food items were placed one by one into the 
first food cache before the second food cache was baited 
one by one. After the two caches were baited, the animal 
was permitted to choose between them and indicated her 
choice by touching it. Upon making a choice, the animal 
was given the contents of her chosen food cache. We 
included two control conditions to exclude the possibility 
that the animals’ quantity choices were determined by 
experimenter cuing or by the temporal duration of stimu-
lus presentation.

Subjects

Two olive baboons (Papio anubis), housed and tested at 
the Seneca Park Zoo in Rochester, New York, partici-
pated in these experiments. The zoo provided primate 
chow and fresh fruits and vegetables to the subjects every 
morning, and water was available ad libitum. Research 
with these subjects was approved by the Seneca Park 
Zoo Conservation & Research Committee.

The subjects did not have prior laboratory training in 
quantity discrimination. At the time when these data 
were collected, both subjects were experiment naive: 
Neither animal had participated in an experimental task 
other than the current decision task, in which they were 
reinforced with food on every trial and thus not condi-
tioned to discriminate quantity.

As in many primate studies, a sample size of 2 was suf-
ficient for our goals. In contrast to most human research, 
our study was not aimed at making inferences about a 
population. Rather, our primary interest was in exploring 
whether counting-like behavior is possible in nonhuman 
animals. Logically, a demonstration of possibility requires 
only a single example.1 Thus, a small sample size is suffi-
cient for determining whether a cognitive capacity is pos-
sible in a population. A small sample also is ideal for 
collecting hundreds or thousands of measurements from 
the same individuals over long periods of time, which can 
provide rich insights into cognitive processes. The limita-
tion of a small sample size is that it licenses population-
level inferences only if the population is mostly 
homogeneous. Indeed, there are reasons to expect that 
nonhuman primates are homogeneous in their cognitive 
capacity for quantitative reasoning because the ability to 
make quantitative judgments is phylogenetically wide-
spread among animals (Gallistel, 1989), and thus is likely 
to appear in most individuals. However, the issue of 
whether or not our observations can be extrapolated to 
the population level is independent of our conclusion that 
counting-like behavior is possible in a nonhuman animal.
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Apparatus

The main apparatus was a small, short rectangular sliding 
tabletop (75 cm long × 35 cm deep × 17 cm high; see Fig. 
1). Three sides of this sliding panel were shielded by 
plexiglass, to prevent the baboons from interacting with 
the apparatus until the appropriate time. The remaining 
side (a long side) was open so that an experimenter 
could work the apparatus. There were three equally 
spaced ports (2.5-cm diameter, 30 cm apart) in the plexi-
glass that the subject could use to indicate her choices. In 
front of each port was an opaque cylinder. The cylinders 
were open on both ends so that the experimenter could 
drop items into them and also lift them up, leaving their 
contents on the panel. Once items were dropped into the 
cylinders, the items were hidden from the subject. After 
two cylinders were baited with items, the panel was slid 
forward toward the subject so that she could make her 
choice. The items to be enumerated were shelled half 
peanuts.

Procedure

Main experiment.  Each session was conducted by two 
experimenters. One experimenter worked the apparatus 
while the second recorded the subject’s choices, moni-
tored the first experimenter for trial accuracy, and also 
operated a video camera, which was used to record each 
session. A session was conducted when a subject could 

be temporarily isolated from the troop in an enclosure, 
which happened one to three times a week per monkey. 
Each session lasted approximately 30 min.

On each trial, two cylinders were baited sequentially, 
one item at a time. For example, if the experimenter was 
testing the numerical pair 3 versus 6, three peanuts (Set 1) 
were placed into one cylinder one at a time, and then six 
peanuts (Set 2) were placed into a second cylinder one at 
a time. The experimenter touched the cylinders in the 
same way and for the same amount of time for each pea-
nut. To initiate a trial, an experimenter showed the sub-
ject one peanut, holding it about 30 cm from the subject 
and above the experimental panel. Each peanut was pre-
sented to the subject in the same way for 2 s and then 
placed into a cylinder; there was a 2-s delay between 
items. To ensure that subjects did not base their choices 
on the spatial location of the sets of food items, we 
designed the trials so that across a session, the larger and 
smaller numerical values were equally likely to appear in 
any one of the three cylinders. Note that although there 
were always three cylinders on the sliding panel, only 
two of these cylinders were baited with food on a given 
trial. The presence of the third cylinder allowed us to 
monitor subjects’ understanding of the general task 
requirement that only baited caches should be chosen. 
Subjects almost never selected the empty cylinder (1% of 
trials), which indicates that they understood the task.

After the cylinders had been baited with peanuts, the 
panel was pushed forward, and the subject was allowed 
to make a choice from among the three cylinders. In 
order to prevent gaze cuing, once the panel was pushed 
forward, the experimenters looked down at their laps 
until the subject indicated her choice by poking her fin-
ger through the port in front of the desired cylinder. 
Then, the experimenter removed the cylinder covering 
the desired food, and the food reward was fed, one pea-
nut at a time, to the subject through the same port. If 
there was no food under the chosen cylinder, the subject 
received no reward. When the subject had received the 
entirety of the reward, the experimenter removed the 
other two cylinders from the panel, revealing their con-
tents, and removed all remaining food items. The experi-
menter then pulled the panel back, away from the subject, 
and reset the board. The next trial was initiated. This 
procedure was used throughout the experiment.

Interspersed with the sequential trials just described 
were trials in which food items were presented simulta-
neously. In these trials (50% of all trials), the two sets of 
food items to be compared were presented all at once, 
one set in each hand, and then placed into their cylin-
ders. The numerical values of the sets were the same as 
in the sequential trials (i.e., values of 1 to 8 items). These 
simultaneous trials were randomly intermixed with 
sequential trials across the experiment. The simultaneous 

Fig. 1.  Illustration of the task apparatus. After placing food items in 
two of the cylinders, the experimenter slid the panel toward the mon-
key so that she could make her choice by poking her finger through 
the port in front of the desired cylinder.
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trials are not the focus of this report, and data from these 
trials were not included in any of the analyses reported. 
However, both animals made highly accurate choices on 
the simultaneous trials (mean accuracy = 80%; Monkey 1: 
130 out of 170 trials, p < .001; Monkey 2: 160 out of 194 
trials, p < .001), and they showed a numerical ratio effect 
in their performance (Monkey 1: R2 = .49, Monkey 2: R2 = 
.90). We included simultaneous trials in each session so 
that subjects would not be biased to use the duration of 
presentation to make their discrimination, given that on 
simultaneous trials, the two sets were presented for the 
same total duration.

Subjects were tested on a total of approximately 175 
sequential trials over 10 to 12 sessions. The number pairs 
tested were all possible pairs of the numbers from 1 
through 8 (27 different numerical comparisons). Subjects 
completed approximately 6 trials for each number pair. 
The order of the test trials was randomized within and 
between subjects. Note that the subjects were reinforced 
on every trial in that they received the food items in the 
cylinder they chose. The only way that this reinforcement 
could be construed as differential reinforcement is if the 
animals actively discriminated the quantity of the reward 
they received from the quantity of the reward they did 
not receive. Thus, the animals were not trained to dis-
criminate quantities at any point in this experiment, and 
the animals’ discrimination abilities derived from their 
spontaneous quantitative cognition.

Experimenter-cuing control.  Immediately following 
the main experiment, a control condition was conducted 
to rule out the possibility that experimenter cuing led the 
animals to their quantity choices during the main experi-
ment. If the subjects had relied on experimenter cues to 
make their choices, then they would fail to select the 
greater set once those cues were removed. In this condi-
tion, one experimenter fully baited the first cylinder, and 
then the second experimenter baited the second cylinder. 
Each experimenter read the numerical value of the food 
items to be placed in the cylinder from a trial list that 
showed the quantity of only one set. The two experi-
menters sat back to back so that they could not see each 
other. Thus, each experimenter knew only the value for 
the cylinder he or she baited and did not see the baiting 
of the other cylinder. This procedure eliminated the pos-
sibility of subconsciously cuing the animals.

The subjects were first familiarized with this new pro-
cedure with values of 1 versus 2 and 2 versus 9. Both 
subjects performed above chance in the first session with 
this new procedure (binomial tests; mean accuracy = 
75%, p < .05; Monkey 1: 19 out of 24 trials, p < .01; 
Monkey 2: 17 out of 24 trials, p < .05). The subjects were 
tested with these two numerical comparisons until they 
reached 70% accuracy for two sessions (24 trials/session). 

Monkey 1 required the minimum of two sessions to reach 
criterion, and Monkey 2 required four sessions. The sub-
jects then were tested on approximately 100 additional 
trials of this control condition. The number pairs tested 
were 1 versus 5, 1 versus 6, 1 versus 7, 1 versus 8, 2 ver-
sus 5, 2 versus 6, 2 versus 7, 2 versus 8, 3 versus 5, 3 
versus 6, 3 versus 7, 3 versus 8, 4 versus 5, 4 versus 6, 4 
versus 7, and 4 versus 8. The subjects completed approxi-
mately 6 trials for each number pair. The order of the test 
trials was randomized within and between subjects.

Timing control.  Following the cuing control condition, 
we tested performance in a second control condition, to 
rule out the possibility that the relative presentation dura-
tion for the two sets determined the animals’ choices dur-
ing the main experiment. If the subjects had relied on 
timing cues to make their choices, then they would fail to 
select the greater set once those cues were removed. As 
mentioned, the two sets were presented for the same 
total duration in the simultaneous trials of the main 
experiment, and the animals successfully discriminated 
the number of items in the sets on those trials. Thus, it is 
unlikely that the subjects used the relative duration of the 
baiting of the two caches as a cue to the larger amount 
on the sequential trials. Nonetheless, we presented con-
trol trials to rule out the possibility that the animals had 
used total duration as a cue during the sequential trials of 
the main experiment. In these control trials, the duration 
of the baiting time for one of the cylinders was 30 s. On 
half of the trials, the set with the larger numerical value 
had the 30-s baiting time, and on the remaining half of 
the trials, the smaller quantity had the 30-s baiting time. 
Note that for all the quantities tested in these control tri-
als, 30 s was longer than the maximum baiting time in the 
protocol of the main experiment.

The subjects were tested on a total of 48 trials over 
two sessions: 24 control trials randomly intermixed with 
24 trials with the standard baiting-time protocol from the 
main experiment (i.e., 4 s per item for both sets). The 
number pairs tested were 2 versus 4, 2 versus 6, and 4 
versus 6. The subjects completed 8 control trials and 8 
standard trials per number pair. The order of the test tri-
als was randomized within and between subjects.

Data coding

The animals’ choices were coded off-line by two inde-
pendent coders (interrater reliability: κ = .875, p < .001). 
Also coded were the animals’ movements between the 
caches (switches) prior to making a choice. A trial was 
not coded for switches if the monkey did not sit at the 
cylinder with Set 1 prior to sitting at the cylinder with Set 
2 (15%), if the videotape was dark or no video was avail-
able (7%), if the switch point was ambiguous because the 
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subject engaged in some other activity before moving 
from Set 1 to Set 2 (5%), or if the monkey switched back 
to the first cache after moving to the second (2%). 
Switching behavior was coded in 111 sequential trials for 
Monkey 1 and 137 sequential trials for Monkey 2 in the 
main experiment, 108 trials for Monkey 1 and 99 trials for 
Monkey 2 in the cuing control condition, and 44 trials for 
Monkey 1 and 41 trials for Monkey 2 in the timing control 
condition.

Results

Both monkeys chose the larger quantity on the majority 
of trials coded for switching in the main experiment 
(mean accuracy = 68%; Monkey 1: 81 out of 111 trials, 
p < .001; Monkey 2: 86 out of 137 trials, p < .001). Mean 
accuracy was comparable when we included all trials in 
the main experiment (mean accuracy = 67%; Monkey 1: 
108 out of 161 trials, p < 0.001; Monkey 2: 127 out of 190 
trials, p < 0.001). As expected, the monkeys’ discrimina-
tion abilities were modulated by the numerical ratio 
between the choices (Fig. 2): As the ratio between the 
quantities increased, the monkeys’ accuracy at choosing 
the larger quantity decreased. This ratio effect is a com-
mon characteristic of nonsymbolic numerical discrimina-
tion and is known as Weber’s law (Gallistel & Gelman, 
2000). The monkeys’ actual accuracy fit the predicted 
accuracy under a model of Weber’s law (following 
Cantlon & Brannon, 2006b; Pica, Lemer, Izard, & Dehaene, 
2004; Monkey 1: R2 = .98, Monkey 2: R2 = .72;). Their 
average sensitivity to differences between numerical val-
ues was 0.86 (their Weber fraction). This means that the 
monkeys required nearly a 2:1 ratio between the two 
quantities to reliably identify the larger one. Prior research 

has found finer quantity discrimination in nonhuman pri-
mates (e.g., Cantlon & Brannon, 2006b; Nieder & Miller, 
2003). However, in contrast to the subjects in that prior 
research, the subjects in the current study had no prior 
training with quantity discrimination and were rewarded 
with food on every trial. Differences in experience and 
motivation could explain the differences in quantity dis-
crimination across the studies.

A more surprising characteristic of the monkeys’ 
behavior occurred in the moments leading up to their 
final quantity choice. On 37.5% of trials in the main 
experiment, they physically moved from the first set to 
the second set before the experimenter had finished bait-
ing the second cache. There was no requirement in this 
task for the animals to make a speeded decision, and 
thus their switching from one set to the other was based 
on spontaneous on-line decision making (see Video S1 in 
the Supplemental Material available online for a video of 
this midbaiting switching behavior in a monkey). These 
spontaneous switches were generally logical in that they 
largely occurred when the second set was larger than the 
first (M = 70%, SD = 4%, 64 out of 93 trials, p < .001; 
Monkey 1: 24 out of 33 trials, p < .01; Monkey 2: 40 out 
of 60 trials, p < .01). This result suggests that the animals 
were spontaneously switching to Set 2 on the basis of the 
relative values of Sets 1 and 2.

We analyzed, trial by trial, when during the baiting 
sequence the subjects physically moved from Set 1 to Set 
2. To do this, for each Set 2 item, we coded whether or 
not the animal had switched by the time that item was 
added to Set 2. We then plotted the proportion of switches 
as a function of the relative value of Set 2 compared with 
Set 1 (Fig. 3). The data showed that as Set 2 approached 
and exceeded the value of Set 1, the monkeys were 
increasingly likely to switch from Set 1 to Set 2 (cumula-
tive Gaussian goodness-of-fit tests: average R2 = .90, R2 = 
.91 for Monkey 1, R2 = .82 for Monkey 2). Note that we 
examined the relative value of Set 2, not its absolute 
value; it was the difference in quantity between the two 
sets, not the absolute value of one set, that drove the 
subjects’ switching behavior. Figure 3 also shows that 
extreme differences in cardinality (high and low values 
on the x-axis) led to extreme differences in behavioral 
patterns: There were virtually no switches when Set 1 
was much larger than Set 2, and most switches occurred 
when Set 2 was much larger than Set 1. This pattern is 
what would be expected if the subjects had made 
repeated mental comparisons of the quantities through-
out the baiting.

The animals’ probability of switching to Set 2 was con-
strained by their Weber fraction (0.86). To visualize the 
match between their behavior and psychophysical pre-
dictions based on their Weber fraction, we calculated the 
predicted probability that an animal with a 0.86 Weber 
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fraction would switch to Set 2 for each combination of 
Set 1 and Set 2 values that was presented in the experi-
ment. We then overlaid these predictions on the graph in 
Figure 3 (see Fig. S2 in the Supplemental Material), in 
order to compare the predicted probabilities with the 
actual time course of switching in the monkeys. The pre-
dictions based on the monkeys’ Weber fraction accounted 
for the observed probabilities of switching (R = .97, p < 
.001; Fig. S2). In addition, the relation between the pre-
dictions based on the Weber fraction and the probability 
of switching remained strong after we controlled for the 
experiment-wide probability that Set 2 would be larger 
than Set 1 for each value of Set 1 (partial R = .84, p < 
.001). These results support the conclusion that the ani-
mals continuously compared the quantities of the sets 
using approximate representations of quantity.

We also analyzed the value of Set 2 at the point when 
the animals switched and found that this value was pro-
portional to the total number of items in Set 1 (Fig. 4); the 
number of items in Set 2 at the switch point was greater 
for larger values of Set 1. This finding reinforces the claim 
that the monkeys’ switching behavior was based on a 
running comparison of quantity. This finding is also 
important because it shows that the influence of the rela-
tive values of the two sets on the animals’ switching 
behavior was observed not only in the probability of a 
switch but also in the value chosen as the switch point. 

The relation between the value of Set 1 and the switch 
point was observed both when the animals chose the 
greater quantity (correct trials) and when they chose the 
smaller quantity (incorrect trials), but the average switch 
point was considerably lower on the incorrect trials. On 
average across both correct and incorrect trials, the mon-
keys switched from Set 1 to Set 2 in the middle of the 
baiting sequence when the value of Set 2 was 1.4 items 
less than the value of Set 1 (switch point minus value of 
Set 1 = −1.5 for Monkey 1 and −1.3 for Monkey 2). Thus, 
the monkeys switched to Set 2 when it was approxi-
mately equal to Set 1.

As explained earlier, to rule out the possibility that 
subconscious cuing by the experimenter influenced the 
animals’ behavior, we conducted a cuing control condi-
tion. In this condition, the human experimenters could 
not give subconscious cues to the correct choice because 
they did not know which cache was correct. As in the 
main experiment, we found that both animals frequently 
switched to Set 2 before all the food items were placed in 
the cylinder (38% of trials) and were more likely to switch 
to Set 2 as its value increased relative to Set 1 (cumulative 
Gaussian goodness-of-fit tests: R2 = .92 for Monkey 1 and 
R2 = .94 for Monkey 2). Thus, the animals exhibited quan-
tity-dependent switching behavior even when the experi-
menters were naive to the quantities presented and 
unable to provide cues to the larger value.

We conducted a timing control condition to test the 
possibility that the animals discriminated the two sets on 
the basis of total duration of set presentation, instead of 
the number of items in each set. In this condition, one set 
on each trial was presented for a total duration of 30 s, 
which always was longer than the baiting duration of the 
second set. The monkeys performed above chance on 
the duration control trials (mean accuracy = 71%, p < .05; 
Monkey 1: 16 out of 24 trials, p = .07; Monkey 2: 18 out 
of 24 trials, p < .05), and there was no significant differ-
ence in performance between these control trials and the 
standard trials (standard trials: 79% correct; control trials: 
71% correct), χ2(1, N = 96) = 0.89, p = .35. The animals 
did not have a bias toward picking the cache with the 
longer baiting time (that cache was chosen on 44% of the 
control trials). This suggests that the monkeys quantified 
the items in each cache, not the duration of presentation. 
Also, the animals exhibited spontaneous switching dur-
ing the timing control trials (55% of trials), and they were 
more likely to switch to Set 2 as its value increased rela-
tive to Set 1 (cumulative Gaussian goodness-of-fit tests: 
R2 = .95 for Monkey 1 and R2 = .94 for Monkey 2).

The results from the main experiment and control 
conditions indicate that the monkeys’ switching behavior 
is best described as due to the monkeys’ iteratively com-
paring quantities rather than to experimenter cuing or 
the monkeys’ sensitivity to baiting duration. The data are 
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consistent with the conclusion that the monkeys sequen-
tially compared the value of the first set with the item-by-
item changes in the value of the second set. This type of 
increment-and-compare algorithm is an instance of a 
condition-controlled loop. Every time an item was added 
to Set 2, the monkeys (a) incremented their mental rep-
resentation of the value of Set 2 and (b) mentally com-
pared Set 1 and Set 2. They looped through iterations of 
this routine until Set 2 was approximately equal to or 
greater than Set 1, at which point they terminated the 
routine and committed to choosing Set 2. If this condition 
for the relative values of the two sets was not met, they 
defaulted to choosing Set 1. Because the quantitative rep-
resentations that the monkeys used as the basis of this 
algorithm were approximate, as indicated by the numeri-
cal ratio effects shown in Figure 2, their representations 
of the relative values of the two sets were noisy, and thus 
their switch points were only approximately related to 
the relative values of the sets.

We used a Bayesian data analysis to formalize a noisy 
increment-and-compare algorithm and test how well it 

explained the monkeys’ switching behavior in the main 
experiment. This data-analysis technique allowed us to 
specify a space of algorithms the monkeys could have 
used, but leave the particular algorithm to be determined 
from the behavioral data itself: Some settings of the 
model parameters corresponded to alternative accounts 
of the animals’ cognitive processes (e.g., processes that 
did not involve counting). By inferring the most likely 
combination of parameters from the behavioral data, we 
were able to obtain statistical evidence for or against 
each of these alternatives. Our approach builds on recent 
applications of Bayesian data analysis to children’s per-
formance on numerical cognition tasks (Lee & Sarnecka, 
2011; Sarnecka & Lee, 2009).

For the model, we assumed that the animals represent 
the value of Set 1 as an approximate quantity with scalar 
variability. For each item added to Set 2, they (noisily) 
increment an approximate mental counter and compare 
the value of this counter with that for Set 1; they tend to 
switch if Set 2 contains more items. Each of these key 
steps was parameterized with a variable whose value was 
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inferred from the data. These parameters included (a) the 
variability of accumulators for Sets 1 and 2, (b) a baseline 
rate of switching, (c) a rate of switching when Set 2 has 
more elements than Set 1, (d) the probability of incre-
menting Set 2 when each element is added, and (e) a 
baseline attentional probability specifying how often an 
entire trial is ignored. Some settings of these parameters 
lead to viable alternative algorithms that do not count 
and compare, contrary to what we hypothesized. For 
instance, if the probability of incrementing Set 2 when 
each item is added is close to zero, this would mean that 
the representations of quantity are not updated with each 
item. If the baseline probability of switching is high, 
behavior is not dependent on the relative quantities of 
the two sets, and depends perhaps only on time. If Sets 1 
and 2 are given very different noise (Weber ratio) values, 
it may be that the two sets are represented by qualita-
tively different systems. If quantities are precisely enu-
merated, the analysis will recover Weber ratios that 
approach zero. Exact counting therefore corresponds to 
a particular setting of the model parameters that could be 
supported by the data. Thus, by determining the param-
eter values that were most consistent with the behavioral 
responses, we effectively tested these alternative accounts 
against the parameter values implied by the increment-
and-compare algorithm.

We used a standard sampling approach to find the 
likely range of the parameters given the observed behav-
ioral data from the main experiment. The model traded 
off between parameter values that occurred in a likely a 
priori range and those that fit the data well. We chose 
simple and standard forms for the priors and likelihood. 
The accumulator-variability parameters were given 
Gamma(2,1) priors on the variance. For the baseline 
switching rate, we chose a Beta(1,9) prior, corresponding 
to a low baseline expectation for switches. The remain-
ing three parameters were each given uniform (Beta(1,1)) 
priors, corresponding to no initial biases for particular 
values. This made their inferred values closely track the 
behavioral data. A Bernoulli likelihood was used to deter-
mine the probability of having switched at the time each 
food item was added. For simplicity, the outcome—
whether or not an animal switched—was treated as inde-
pendent for each food item, conditioned on the 
parameters and observed set items. Where possible, 
intermediate variables were integrated out (collapsed).

The model was run using PyMC (Patil, Huard, & 
Fonnesbeck, 2010) to sample values from the posterior 
distribution on these parameters, given the behavioral 
data. A Markov-chain Monte Carlo procedure was run for 
500,000 steps, drawing a sample every 200 steps. The 
model was tuned for 50,000 steps using PyMC’s defaults 
and run for 150,000 steps of burn-in. The quality of the 
model’s inference was assessed using the standard 

method of running multiple chains from different starting 
positions. This revealed quantitatively similar results 
between chains. Our code is available under the GNU 
public license from author S. T. Piantadosi. Introductions 
to these Bayesian analysis methods can be found in 
Kruschke (2010) and A. Gelman et al. (2013).

The Bayesian analysis yielded a posterior distribution 
on each variable, quantifying how strongly one should 
believe each possible parameter value is the true one 
given how the animals behaved in the experiment. Figure 
5 shows these posterior distributions and reveals that the 
most likely parameter values are consistent with the incre-
ment-and-compare algorithm: The monkeys were found 
to have very high probabilities of incrementing with each 
additional element of Set 2 (Fig. 5d). They also had low 
baseline probabilities of switching (Fig. 5b) and high 
probabilities of switching when they believed that Set 2 
contained more elements than Set 1 (Fig. 5c). Thus, their 
behavior was statistically consistent with sequential updat-
ing of Set 2, combined with decisions to switch based on 
comparisons of approximate cardinality. The model 
recovered Weber fractions from the monkeys’ switch trials 
(Monkey 1: 0.89 for Set 1 and 0.64 for Set 2; Monkey 2: 
0.81 for Set 1 and 0.82 for Set 2) that were similar to the 
0.86 Weber fraction calculated with simple fits of the 
monkeys’ performance across all trials, which helped to 
validate the general approach (Figs. 5a and 5b). This was 
true even though the ratios for Set 1 and Set 2 were treated 
independently by the analysis. Indeed, all estimates of the 
monkeys’ Weber fractions indicate considerable variability 
in their underlying representations of quantity, which is 
consistent with nonexact representations. The analysis 
also revealed a moderate degree of inattention on each 
trial (Fig. 5e), which means that some behavioral noise 
may plausibly represent failures to attend.

We also tested whether this model of quantitative pro-
cessing accounted for the monkeys’ behavior in each 
control condition. The posterior distributions of all vari-
ables derived from the control data replicated qualita-
tively and quantitatively those derived from the main 
experiment’s data (see Fig. S1 in the Supplemental 
Material). For all key variables, the ranges and modes of 
the posterior distributions were similar to those obtained 
in the main experiment, though some small numerical 
differences were observed in the probability of inatten-
tion on each trial. Most critically, both control conditions 
showed a probability of incrementing close to 1.0 and 
Weber ratios consistent with approximate representations 
of both sets. In general, these analyses confirmed that the 
monkeys’ quantitative switching behavior in the control 
conditions also was consistent with an increment-and-
compare algorithm.

In general, these results show that the monkeys’ 
behavior was consistent with an increment-and-compare 
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algorithm, across both the experimental and the control 
conditions. Alternative accounts—corresponding to par-
ticular alternative settings of the model’s parameters—
were not supported.

Discussion

This article offers (a) a novel observation of spontaneous 
incremental quantity processing in nonhuman primates, 
(b) a novel theoretical contribution in the formalization 
of a cognitive algorithm underlying nonhuman quantifi-
cation that parallel principles inherent in human count-
ing, and (c) a novel methodological contribution in the 
implementation of a Bayesian analysis technique to test 
this algorithm against the experimental data.

Although many studies have examined the capacity of 
nonhuman animals for quantitative representation, there 
has been no formal proposal of the cognitive algorithm 
that animals use to compare quantitative representations. 
The dominant nonverbal quantity model proposed by 
Gibbon, Meck, and Church (Gibbon, Church, & Meck, 
1984; Meck & Church, 1983) has been implemented 
mostly as a conceptual model. In that model, animals 
compare quantities only after representations are entered 
into memory—there is no pathway for updating or com-
paring representations item by item. We found that mon-
keys spontaneously compared a given quantitative value 
against item-by-items changes in a second value. The 
data show that nonhuman primates inherently increment 
and compare quantitative values using a type of sequen-
tial logic observed in human counting (Carey, 2001; 
Dehaene, 1997; Gallistel & Gelman, 1992). In human 
counting, an internal counter is sequentially incremented 
for each item in a set until some condition is met (e.g., a 
target number is reached, all items are counted, or one 
set is greater than another). Our data indicate that nonhu-
man primates have the ability to use this type of condi-
tion-controlled quantitative logic to make sequential 
nonsymbolic judgments of quantitative values. Moreover, 
our data show that animals can use this quantitative com-
parison process spontaneously, in that switching behav-
ior was not required by the task. The data from the 
control conditions show that the animals did not rely on 
experimenter cuing or the temporal duration of the 
sequences to make quantity choices. The animals’ spon-
taneous switching behavior during quantitative decision 
making provides insight into the cognitive algorithm 
underlying their choices.

By capitalizing on the monkeys’ spontaneous switch-
ing behavior, we formalized a proposal for the cognitive 
algorithm that the animals used to compare quantitative 
representations. We tested an increment-and-compare 
mechanism in a Bayesian model analysis. This novel 
approach is powerful because it provides a theory-driven 

statistical test of the whole parameter space associated 
with the model. The algorithm that we tested predicted 
that the animals noisily increment an internal counter 
for each item presented in a set and then compare each 
updated value against their internal representation of a 
comparison value. The results showed that these param-
eters accounted for the animals’ spontaneous switching 
behavior and quantitative choices. Alternative explana-
tions of the animals’ behavior, including an inability to 
approximate quantity accurately, an absence of Weber’s 
law, an inability to compare item-by-item changes in 
quantity, or random switching, would have corre-
sponded with parameter values that were not supported 
by the behavioral data. Instead, parameter values imple-
menting an increment-and-compare algorithm were 
supported by the data. The increment-and-compare 
algorithm accounted for the animals’ quantity choices 
across all conditions of the experiment, including the 
timing and cuing control conditions. The model results 
provide strong statistical evidence that an increment-
and-compare algorithm underlies the observed behav-
ioral data.

Our results provide novel evidence of a sequential 
comparison algorithm available to nonhuman animals, 
but we did not explore which perceptual dimensions this 
capacity relies on. In particular, the inputs that monkeys 
use to incrementally compare quantities could be numer-
ical, spatial, or a combination of the two. Animals likely 
use a combination of numerical and volumetric proper-
ties of objects in order to quantify sets of food items 
(Stevens, Wood, & Hauser, 2007). In humans, evidence of 
simultaneous numerical and spatial impairments in 
patients with parietal cortex damage indicates that 
numerical representations and spatial representations are 
interdependent (Zorzi, Priftis, & Umiltà, 2002). Thus, the 
computations underlying judgments of spatial extent 
bear a close cognitive and neural relationship with those 
underlying numerical judgments in humans. Current the-
ories suggest that human mathematical concepts are evo-
lutionarily and developmentally derived from the 
cognitive and neural mechanisms of spatial processing 
(Dehaene & Cohen, 2007). We hypothesize that the 
sequential comparison algorithm supported by our data 
is an important computational precursor to the emer-
gence of human counting, regardless of whether it is spe-
cific to numerical judgments or operates more generally 
over spatial quantities such as surface area or volume. 
This algorithm and counting are connected by the way in 
which representations of quantity are processed and 
updated sequentially, rather than by the inputs that the 
algorithm takes.

Our data provide evidence that to compare quantities 
in sequence, nonhuman primates use a type of sequen-
tial logic that is algorithmically and logically similar to 
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human counting. Human counting requires incrementa-
tion, iteration, and condition-controlled logic. The count-
ing-like algorithm that the monkeys used spontaneously 
in this task contains those logical elements. It is incre-
mental in the sense that with each item added to a set, 
the algorithm increments a mental counter. It is iterative 
because it performs an iteration of mental comparison for 
each item added to the comparison set. Finally, it is con-
dition controlled because with each iteration of compari-
son, the algorithm checks whether the second set is 
approximately equal to or greater than the first set, and if 
it is, the algorithm commits to choosing the second set. 
These logical rules underlying monkeys’ quantitative 
judgments are inherent in human counting.

Previous research in developmental psychology has 
been aimed at identifying relations between nonverbal 
quantity estimation and human counting. R. Gelman and 
Gallistel (e.g., 1978; see also Gallistel & Gelman, 1992, 
2000) related specific principles of verbal counting to spe-
cific principles of nonverbal counting mechanisms. For 
example, they argued that a “stable order principle” (R. 
Gelman & Gallistel, 1978, p. 79) in which the tags used to 
enumerate a set are ordered consistently, is observed both 
in children’s verbal counting behavior and in the accumu-
lator mechanism of Meck and Church’s (1983) nonverbal 
counting model for nonhuman animals. Gelman and 
Gallistel proposed that skeletal principles provide the 
scaffolding upon which verbal counting routines emerge, 
and there is support for elements of this “first principles” 
theory (e.g., Cantlon & Brannon, 2006a; Cantlon, Fink, 
Safford, & Brannon, 2007; Gallistel & Gelman, 1992, 2000; 
Geary, 1995; R. Gelman, 1990; R. Gelman & Brenneman, 
1994; Izard, Pica, Spelke, & Dehaene, 2008; Mix, 2002; 
Spelke, 1994; Starkey, Spelke, & Gelman, 1990). The types 
of principles that relate nonverbal quantification and 
human counting differ between our proposal and first-
principles proposals. However, our conclusions are con-
sistent with the general claim that a set of core algorithmic 
operations rooted in nonverbal quantity representation 
forms the basis of verbal counting.

Although there are structural similarities in the algo-
rithms underlying nonhuman “counting” and those 
underlying human counting, human counting extends 
beyond the capacity of counting by nonhuman primates 
because it includes a symbolic component wherein each 
item in a set is put into correspondence not just with an 
internal counter, but also with a term in the ordered list 
of number symbols (Dantzig, 1954) or, in the case of ear-
lier humans, a slash on a stick or bone. Human counting 
also gives rise to conceptual inferences about the struc-
ture of numerical sequences, such as the successor func-
tion (Carey, 2001). Nonhuman primates do not have a 
formal symbolic system for labeling item-by-item changes 
in set size or making symbolic inferences about number 

sequences. The absence of a symbol system prevents 
nonhuman primates from composing a precise represen-
tation of quantity. Yet our results indicate that nonhuman 
primates possess the cognitive operations that are logi-
cally necessary for sequentially tracking and comparing 
quantities item by item. Animals can use this counting-
like logic in the absence of a symbolic system of number 
to make approximate comparisons of quantitative values 
in sequence. The fact that this proto-counting logic is 
present in nonhuman primates indicates that it predated 
counting and tallying in human evolutionary history, and 
perhaps was a critical piece of cognition for the human 
invention of formal counting.
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Note

1. For example, if we want to know whether it is possible for a 
woman to achieve grand-master performance in chess, we need 
only look at the performance of Judit Polgar to see that it is.
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